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We propagate the statistical uncertainty of experimental NN scattering data into the binding energy of 3H
and 4He. We also study the sensitivity of the magnetic moment and proton radius of the 3H to changes in the
NN interaction. The calculations are made with the no-core full configuration method in a sufficiently large
harmonic oscillator basis. For those light nuclei we obtain ∆Estat(3H) = 0.015 MeV and ∆Estat(4He) = 0.055
MeV.
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I. INTRODUCTION

The quantification of uncertainties in nuclear physics has
gained a significant interest in recent years [1–4]. In fact, a
special issue of the Journal of Physics G was dedicated en-
tirely to this particular topic [5]. Of course, the concentrated
attention is fully justified and the importance of providing the-
oretical estimates with error bars cannot be overemphasized
for several reasons. First, it provides guidance on the rela-
tion between the input and the output along with the quan-
tification of the agreement/disagreement between theory and
experiment. Second, it sets the standards for the predictive
power of the theory. Finally, it helps to determine a balanced
experimental program by providing feedback from theory on
what data are significant for determining critical aspects of the
theory.

The very idea of predictive power is unavoidably related to
specifying the links between the input and the output of the
calculation. In this paper we are concerned with the impact
of the uncertainties of Nucleon-Nucleon (NN) interactions on
the structure of the lightest nuclei with A = 2,3,4. The imple-
mentation of such a program requires a scrupulous determi-
nation of errors in NN potentials, for which the main source
of information has traditionally been the abundant scattering
experiments carried up to about the pion production threshold
over the last 70 years. In the case of NN scattering, mea-
surements are performed by counting events, giving a Pois-
son’s distribution to the measured observables. However, if
the number of events is large enough a standard normal distri-
bution can be safely assumed and experimental error bars can
be given as a symmetric 1σ confidence interval. Phenomeno-
logical NN potentials assume a specific form for the interac-
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tion and adjust a number of parameters to describe a collec-
tion of experimental scattering data. The parameter fitting is
usually done via a least squares procedure. Since each ex-
perimental datum is provided with an error bar, the parameter
space contains a confidence region, rather than a single point,
where the description of data is considered correct. This re-
gion constitutes the statistical uncertainty for a particular NN
interaction. Different forms are assumed for the phenomeno-
logical NN potentials describing correctly the same NN scat-
tering database. These differences are a source of systematic
uncertainty. A clear sign of this systematic uncertainty is the
incompatible predictions in scattering observables for kine-
matic regions that have not yet been measured [6]. Another
clear sign of this systematic uncertainty is the different bind-
ing energies and other observables predicted for light nuclei.
These differences in properties of finite nuclei are attributable
to many-body forces which, in principle, are different for each
NN interaction.

We address the specific situation where an NN interaction
alone is adopted as an input to make predictions on various
observables of light and heavy nuclei. In most cases the NN
interaction is taken as exact and only numerical or implemen-
tation errors are considered when providing such calculations
with an uncertainty. However, both statistical and system-
atic errors are inherent to phenomenological interactions and
should be taken into account when quantifying the total uncer-
tainty of a nuclear structure calculation. For light nuclei the
no-core full configuration (NCFC) method [7] provides an ab
initio approach for extrapolating to an infinite basis expansion
of the nuclear wavefunction from a small set of finite basis
expansions with increasing size. The purpose of this work
is to use the NCFC approach to generate a realistic estimate
of the statistical uncertainty stemming from the experimental
NN scattering data, leaving the more complex propagation of
systematic uncertainties for a future endeavor.

The paper is organized as follows: section II describes the
major characteristics of the sum of Gaussians potential which
is the phenomenological NN interaction used in these calcu-
lations. The theoretical framework to propagate the statistical
uncertainties is explained in section III. The NCFC method
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and the corresponding extrapolation uncertainty are shown in
section IV. Deuteron properties are calculated in section V
in order to test the convergence of the No-Core Shell Model
(NCSM) [8] with the sum of Gaussians potential. Section VI
shows the NCFC calculations of 3H and 4He binding energy
with extrapolation and statistical uncertainties. Finally, our
conclusions are summarized in section VII.

II. DESCRIPTION OF THE NN POTENTIAL

The NN interaction used for these nuclear structure cal-
culations is written as the sum of Gaussians potential and
was introduced in [9]. This phenomenological interaction has
been fitted to the self-consistent Granada database with a total
of 2995 neutron-proton and 3717 proton-proton experimental
scattering data [10]. The residuals of the potential (see section
III) have been shown to follow the standard normal distribu-
tion. This allows one to confidently propagate the experimen-
tal uncertainty according to this distribution.

The potential has a clear boundary at rc = 3.0 fm separating
the short and long range part of the NN interaction by means
of

V (r) =Vshort(r)θ(rc− r)+Vlong(r)θ(r− rc). (1)

This differentiates between the purely phenomenological
short range part and the field theoretical long range tail which
ensures the proper analytic behavior of the scattering ampli-
tude. The short range part consists of a sum of Gaussian func-
tions centered around the origin in an operator basis

Vshort(r) =
21

∑
n=1

Ôn

[
4

∑
i=1

Vi,ne−
1
2

(
r(1+i)

a

)2
]
. (2)

The operators Ôn correspond the AV18 basis plus three ad-
ditional operators introduced in Appendix A of [10], the
strength coefficients Vi,n and width parameter a are fitted to
describe the self consistent data base of [10]. The values of
the fitted parameters can be found in Table VI of [9]. The long
range part includes the well known charge dependent one-pion
exchange (OPE) potential plus electromagnetic interactions

Vlong(r) =VOPE(r)+VEM(r). (3)

We refer to the full interaction in Eq(1) as the Gauss-OPE
potential.

III. PROPAGATION OF STATISTICAL UNCERTAINTIES

A chi square minimization scheme corresponds to the trial
assumption that the fitted data are independent and normally
distributed. When the fitting model is flexible enough to accu-
rately describe the data, this assumption becomes equivalent
to the assumption that the discrepancies between theory and
experiment follow the standard normal distribution i.e.

Ri =
Oexp

i −Otheor
i

∆Oexp
i

∼ N(0,1), (4)

where Ri are known as residuals. If the resulting residuals of
a fit do not follow the standard normal distribution the trial
assumption is invalid and any subsequent error propagation
based on normality is at the very least questionable, if not
wrong. For the case of the sum of Gaussians potential the
normality of residuals has been stringently tested and con-
firmed [9]. The fitting procedure used to adjust the potential
parameters allows one to estimate the corresponding covari-
ance matrix C , which propagates the experimental error bars
of the fitted data to the parameters and assumes a multivariate
normal distribution for them. The covariance matrix is defined
as the inverse of the Hessian matrix H

(C−1)i j ≡ Hi j =
∂ χ2

∂ pi∂ p j
, (5)

where χ2 = ∑i R2
i and p is the vector containing the fitting pa-

rameters. To propagate the statistical uncertainties from the
interaction into nuclear structure calculations one could, in
principle, directly use the covariance matrix with

(∆F)2 = ∑
i j

∂F
∂ pi

∂F
∂ p j

Ci j, (6)

where F is any quantity calculated as a function of the po-
tential parameters. However, the level of complexity in most
of the nuclear structure numerical methods makes the calcu-
lation of the derivatives in Eq. (6) computationally costly; a
simple finite differences method at fourth order would require
one to make four evaluations of F to calculate the derivative
with respect to each parameter. Since the sum of Gaussians
potential has 44 independent fitting parameters 1, a total of
176 evaluations would be necessary to propagate the statisti-
cal uncertainty to a single quantity. While one could alterna-
tively proceed to differentiate the NN interaction analytically,
term by term, and evaluate the single terms separately, we will
proceed differently here.

Monte-Carlo techniques provide an efficient approach to
study the sensitivity of elaborate nuclear structure calculations
to variations on the input interaction. To generate a Monte-
Carlo family of potential parameters one simply has to draw
random numbers following a multivariate normal distribution
according to the covariance matrix C

P(p1, p2, . . . , pP) =
1√

(2π)PdetC
e−

1
2 (p−p0)

T C (p−p0), (7)

where p0 has the central values of the fitted parameters.
This sampling can be easily done by taking advantage of the
Cholesky decomposition C = L L T and using independent
standard normal variates z = (z1,z2, . . . ,zp) with

p = p0 +L · z. (8)

1 Although Eq.(2) indicates a total of 21× 4 + 1 = 85 fitting parameters,
some of them correspond to linear combinations of others while some oth-
ers are fixed to zero.
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With M different samples of p one can directly make M evalu-
ations of F and see the resulting spread and distribution. This
technique has been recently employed in [11] to estimate the
statistical uncertainty of the Triton ground state energy. That
particular study was done with M = 205, however a much
smaller sample of M = 30 already gives a fairly similar es-
timate. A direct bootstrapping of the experimental data has
also been used to propagate statistical uncertainties stemming
from NN scattering data [12]. The use of a reduced sample
has also been checked using larger populations both for triton
and the alpha particle using the Faddeev-Yakubovsky equa-
tions [13].

IV. NO-CORE FULL CONFIGURATION METHOD

The No-Core Full Configuration (NCFC) method, as an ab
initio approach, solves the many body Schrödinger equation

H Ψi(~r1, . . . ,~rA) = Ei Ψi(~r1, . . . ,~rA) (9)

by expanding the corresponding wavefunction of Z protons
and N neutrons in a A = Z +N-body basis of Slater determi-
nants Φk of single-particle wave functions φnl jm(~r)

Ψ(~r1, . . . ,~rA) = ∑ckΦk(~r1, . . . ,~rA) , (10)

with

Φk(~r1, . . . ,~rA)=A [φn1l1 j1m1(~r1)φn2l2 j2m2(~r2) . . .φnAlA jAmA(~rA)]

and A the antisymmetrization operation. Even though it is
customary to use the harmonic-oscillator (HO) basis for the
single-particle wavefunctions, the method can be extended to
more general single-particle bases [14]. The single-particle
wavefunction labels indicate the quantum numbers: n and l
are the radial and orbital HO quantum numbers (with Ni =
2ni + li the number of HO quanta), j is the total spin and m
is its projection along the z-axis. Once the basis expansion
of the many-body wavefunction has been made Eq. (9) be-
comes a linear algebra eigenvalue problem with sparse ma-
trices. The many-body Hamiltonian H in Eq. (9) can be ex-
pressed in terms of the relative kinetic energy plus 2-body,
3-body, and, in general, up to A-body interaction terms

H = Trel +VCoulomb +VNN +VNNN + . . . (11)

In this work we restrict ourselves to a 2-body (NN) interac-
tion, leaving the inclusion of appropriate 3 and more body
forces to future investigations.

Of course the numerical solution of the eigenvalue problem
in Eq. (9) requires the truncation of the infinite-dimensional
basis expansion. Because of this truncation, the solution gives
a strict upper bound for the lowest state with a given spin and
parity. The NCFC method establishes the convergence pat-
tern as a functions of the HO energy along with increasing
basis space dimension and extrapolates to a complete infinite
basis. This requires the solution of eigenvalue problems of
considerably large matrices with dimensions well over a bil-
lion. Therefore the algorithms used to construct and operate

with these matrices are required to make an efficient use of the
available computational resources [15–17]

We use the Nmax truncation, which restricts the total num-
ber of HO quanta of the many-body basis: the basis is limited
to many-body states with ∑A Ni ≤ N0 +Nmax, where Ni is the
number of quanta of each single-particle state; N0 is the min-
imal number of quanta for that nucleus; and Nmax is the trun-
cation parameter. For HO single-particle states, this trunca-
tion leads to an exact factorization of the center-of-mass wave
function and the relative wave function [8, 14, 18, 19]

A. Extrapolation Method and Extrapolation Uncertainty
Quantification

We use the empirical extrapolation introduced in [20] and
expanded in [7, 21] for the ground state energy at a fixed value
of the oscillator constant h̄Ω

Egs(Nmax) = aexp(−cNmax)+E∞. (12)

This type of extrapolation requires one to solve Eq.( 9) mul-
tiple times to calculate Egs with at least three different values
of the cut-off parameter Nmax in order to fit the a, c and E∞

parameters. An estimate of the solution of Eq.( 9) with a in-
finitely large basis is given by E∞.

Given the variational nature of this approach an extrapo-
lation can be improved, by either fitting the parameters in
Eq.( 12) to a larger number of points or by fitting to ground
state energies with larger basis size. With this in mind the
extrapolation uncertainty is quantified by direct comparison
with extrapolations based on lower Nmax results. In [7, 21] an
extrapolation is made by taking sets of three E(Nmax) values,
say Nmax = 10, 12, 14 while the extrapolation uncertainty is
estimated by taking the difference with the extrapolation using
Nmax = 8, 10, 12. For this work we perform all extrapolations
by starting with Nmax = 8 and include consecutive even values
up to a certain number of points Np. The extrapolation uncer-
tainty is estimated by comparing with an extrapolation using
one point less. For example, an extrapolation with Np = 4
uses Nmax = 8, 10, 12, 14 and the corresponding uncertainty
is the difference with the extrapolation using the three points
Nmax = 8,10,12. These extrapolations with a larger number
of points can reduce the extrapolation uncertainty up to two
orders of magnitude while keeping the statistical uncertainty
within the same order. Also, this approach is self-consistent
in the sense that the extrapolation uncertainty decreases as the
number of points increases and for a given number of points
the extrapolation is within the uncertainty of smaller extrapo-
lations. Although additional methods are available for extrap-
olating to the ground state energy with an infinite basis from
calculations using truncated HO bases [22, 23], the method
described here allows us to compare the size of the extrapola-
tion error with the statistical uncertainty.



4

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0 1 2 3 4 5 6 7 8 9 10

ρ
k
2
(f
m
)

k (fm−1)

DS-OPE
DS-χTPE
Gauss-OPE
AV18
Reid93
NijmII

FIG. 1: (Color online) Deuteron momentum distribution for different
local potentials. DS-OPE (blue band), DS-χTPE (red band), Gauss-
OPE (green band), AV18 (yellow dashed line), Reid93 (red short-
dashed line) and NijmII (light blue dotted line).

V. DEUTERON AND CONVERGENCE RATE

In order to get an initial insight into the convergence of
NCSM calculations using the Gauss-OPE potential we cal-
culated first the Deuteron momentum distribution using dif-
ferent phenomenological potentials. In particular, we use Ar-
gonneV18 [24], Reid93 [25], NijmII [25], and the delta shell
potentials DS-OPE [10, 26] and DS-χTPE [27], in addition
to the Gauss-OPE potential [9]. For the DS-OPE, DS-χTPE
and Gauss-OPE potentials, we included the results from the
Monte-Carlo sampling described in the previous sections to
form bands of results. The momentum distributions can be
seen in Fig. 1. It is remarkable that the delta-shell potentials
contain the largest high-momentum component despite hav-
ing no repulsive hard core. This is probably due to the dis-
continuities in which the potential goes from zero to infinity.
In fact, these large momentum distributions become manifest
when performing NCSM calculations with these two interac-
tions as the convergence rate is significantly slower. Out of
the remaining interactions, the Gauss-OPE and Reid93 poten-
tials give the smallest high momentum contribution indicat-
ing that they are considerably softer than the other potentials
considered. We also note in passing the clearly incompatible
high momentum distributions even within the 1σ statistical
uncertainty shown as a band for the DS-OPE, DS-χTPE and
Gauss-OPE. These incompatibilities are indeed expected and
are a signal of the present systematic uncertainties which still
need to be quantified.

In order to directly test the convergence of NCSM calcula-
tions using the Gauss-OPE potential, we calculated the bind-
ing energy and root mean square radius of the Deuteron using
different values of the oscillator parameter h̄Ω and different
basis truncation Nmax and compare with the same calculations
using the Reid93 potential. The results are shown in Figure
2. As can be seen Gauss-OPE has a faster convergence rate
which can be traced to its significantly softer core. All of this
is in agreement with our previous Weinberg eigenvalue anal-

yses of these and other local interactions [4].

VI. NCFC CALCULATIONS OF 3H AND 4HE

Once Gauss-OPE has been shown to have an advantageous
convergence rate for ab initio NCSM calculations of light nu-
clei we use it to propagate the statistical uncertainty stemming
from experimental NN scattering data into the calculation of
the binding energy of 3H and 4He. As a first step we looked
for the variational minimum of the ground state energy of 3H
and 4He as a function of the oscillator parameter h̄Ω with the
sufficiently large basis size Nmax = 20 and the central values
of the Gauss-OPE potential parameters. The minima were
found at h̄Ω= 60MeV for 3H and h̄Ω= 65MeV for 4He. Hav-
ing found the variational minimum, the Monte-Carlo method
described in section III was used to generate a family of 33
interactions following the multivariate Gauss distribution of
the potential parameters befitting the covariance matrix. With
each set of parameters the ground state binding energy of 3H
was calculated using different many-body basis space cutoffs
Nmax = 8,10,12,14,16,18,20 with the value of h̄Ω fixed at
the variational minimum mentioned above. These evaluations
allowed us to perform, for sets of Nmax values with three to
seven entries, 33 extrapolations following Eq.(12) to estimate
the corresponding statistical uncertainty. Table I shows the
resulting extrapolations for 3H and 4He with different num-
ber Nmax entries; a clear convergence pattern can be seen as
larger basis spaces are included in the extrapolation for the
complete space estimate and the corresponding uncertainties.
Other observables can be extracted from the resulting many-
body wavefunction of the truncated oscillator basis expansion.
In particular, we investigated the magnetic moment µ and pro-
ton radius rp of 3H and their sensitivity to the Monte-Carlo
sampling of the interaction parameters distribution. For these
quantities we find µ = 2.610(1) µN rp = 1.4668(8)fm.

The extrapolations using the seven available E(Nmax) val-
ues and those corresponding to the last row of Table I are
shown in Figure 3 as blue lines. As can be seen from the fi-
nite basis calculations and the corresponding extrapolations
the statistical uncertainty decreases as the cutoff parameter
Nmax is increased.

We now call attention to the inserts in Figure 3 where we
display, on a greatly expanded scale, the extrapolated ground
state energies for each of the 33 Monte-Carlo samples. The vi-
sual impression is that these results are distributed in a manner
that may be consistent with a Gaussian distribution though we
do not carry out a detailed study of these limited distributions.
These results have some additional impact on the numerical
method itself. While in the case of the triton the dominating
uncertainty for Np = 7, using calculations up to Nmax = 20,
is the statistical one, in the alpha particle case the situation
is just the opposite, indicating that higher Nmax values should
probably be pursued to confirm the statistical uncertainty. Of
course, in both situations there is a mismatch with the experi-
mental binding energies, for which the traditional explanation
rests on the inclusion of three- and four-body forces.

In addition, we have restricted the analysis to the statistical
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FIG. 2: (Color online) NCSM calculations of the Deuteron binding energy (left panels) and root mean square radius (right panels) as a
function of the basis truncation parameter Nmax with different values of the harmonic oscillator parameter h̄Ω for the Gauss-OPE (top panels)
and Reid93 (bottom panels) potentials. The Gauss-OPE potential shows a faster convergence rate in both quantities as evident from the smaller
spread with respect to h̄Ω at fixed Nmax.

TABLE I: 3H and 4He ground state energy NCFC extrapolation for the Gauss-OPE potential using different number of E(Nmax) points Np
according to Eq.( 12). All extrapolations start with Nmax = 8 and include consecutive even values up to the corresponding number of points Np.
E∞ is the mean of the 33 Monte-Carlo calculations with that number of points, the extrapolation uncertainty ∆Eext

∞ is the difference between
the extrapolation with Np points listed and the extrapolation with a single point less. The statistical uncertainty ∆Estat

∞ is given by the standard
deviation of the Monte-Carlo extrapolations with the indicated number of entries Np. For comparison we show experimental values in the last
line [28]. Energies are in units of MeV

3H 4He
Np E∞ ∆Eext

∞ ∆Estat
∞ E∞ ∆Eext

∞ ∆Estat
∞

3 -8.289 − 0.061 -29.224 − 0.226
4 -7.408 0.881 0.020 -25.980 3.244 0.085
5 -7.486 0.078 0.019 -25.417 0.563 0.066
6 -7.421 0.065 0.016 -25.102 0.315 0.058
7 -7.424 0.003 0.015 -24.934 0.168 0.055

EExp -8.482 -28.296

uncertainties of the NN interaction stemming directly from
the scattering data. In a previous work [29] the role played by
the potential representation has been analyzed and it has been
found that there are statistically equivalent interactions which,
however, produce larger systematic uncertainties by about an
order of magnitude in scattering observables. Thus, we expect
that when this additional systematic uncertainty is included in

the analysis the current numerical uncertainty for Np = 7 will
actually be small by comparison.



6

-8

-6

-4

-2

0

2

8 12 16 20

E
(3
H
)
[M

eV
]

Nmax

-8

-6

-4

-2

0

2

8 12 16 20

E
(3
H
)
[M

eV
]

Nmax

-7.469

-7.447

-7.425

-7.403

-7.381

∞
-7.469

-7.447

-7.425

-7.403

-7.381

∞

-30

-25

-20

-15

-10

-5

0

8 12 16 20

E
(4
H
e)

[M
eV

]

Nmax

-25.11

-25.03

-24.95

-24.87

-24.79

∞

FIG. 3: (Color online) NCSM ground state energy as a function of Nmax for 3H at h̄Ω = 60 MeV (left panel) and 4He at h̄Ω = 65 MeV (right
panel) with the Gauss-OPE potential. The red error bars indicate the mean and 3σ confidence interval of the 33 calculations with different
potential parameters (see main text). The blue solid curves give the corresponding 33 extrapolations fitting the a, c and E∞ of Eq.12 to the
calculated values of E(Nmax = 8,10, . . . ,20). The panels at the top right corners show the extrapolated value at Nmax→ ∞ from each fit with
an error bar indicating the corresponding mean and 3σ confidence interval. The solid black indicates the experimental value.

VII. CONCLUSIONS

We performed NCFC calculations of 3H and 4He combined
with Monte-Carlo techniques to extract realistic estimates of
the statistical uncertainty originating from uncertainties in ex-
perimental NN scattering data. The calculations used the
Gauss-OPE potential which showed an appropriate conver-
gence rate for calculations in light nuclei given its soft core
nature. The converged result from extrapolation in 3H is in
agreement with the previous findings in [11]. In all cases the
uncertainty of the NCFC extrapolation was assessed by com-
paring with extrapolations based on a reduced number of en-
tries for determining the fit function. For the case of 3H it was
possible to obtain a result where the extrapolation uncertainty
is smaller than the statistical uncertainty. However, this was
not possible for the 4He case. Nonetheless one should keep in
mind that the systematic uncertainty, according to preliminary

studies [29], is expected to be an order of magnitude larger
than the statistical uncertainty. Therefore, it may not be prof-
itable to reduce the extrapolation uncertainty by performing
calculations with an even larger basis size.

This work was supported by the US Department of Energy
under Grants No. DESC0008485 (SciDAC/NUCLEI) and No.
DE-FG02-87ER40371, by the US National Science Founda-
tion under Grant No. 0904782. Computational resources were
provided by the National Energy Research Supercomputer
Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. This work was also supported by Spanish
DGI (grant FIS2014-29386-P) and Junta de Andalucı́a (grant
FQM225). This work was partly performed under the aus-
pices of the U.S. Department of Energy by Lawrence Liv-
ermore National Laboratory under Contract No. DE-AC52-
07NA27344.

[1] J. Dobaczewski, W. Nazarewicz, and P. G. Reinhard, J. Phys.
G41, 074001 (2014), 1402.4657.

[2] J. D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S. M.
Wild, and W. Nazarewicz, Phys. Rev. Lett. 114, 122501 (2015),
1501.03572.

[3] B. D. Carlsson, A. Ekström, C. Forssén, D. F. Strömberg,
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[26] R. Navarro Pérez, J. E. Amaro, and E. Ruiz Ar-
riola, Phys. Rev. C88, 024002 (2013), [Erratum: Phys.
Rev.C88,no.6,069902(2013)], 1304.0895.
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